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Tessellating trimmed NURBS 

surfaces 
Leslie A Piegl and Arnaud M Richard 

_ 

An algorithm for obtaining a piecewise planar approximation 
of a trimmed ~~JRHS surface is presented. Given a model space 
tolerance C. the algorithm triangulates the parameter space 
domain of the trimmed surface such that the 3D planar 
approximation, obtained by mapping 2D triangles onto the 
surface, deviates from the trimmed surface by no more than I:. 
The number of triangles computed in parameter space depends 
on the bounds of the second derivatives. A detailed discussion 
of the algorithm and a practical error analysis of the tessellation 
are provided. 
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Trimmed surfaces have a fundamental role in computer- 
aided design’ 4. Most complex objects are generated by 
some sort of trimming/scissoring process, i.e. unwanted 
parts of the rectangular patch are trimmed away. 
Trimmed patches are also the result of Boolean 
operations on solid objects bounded by NI!RRS surfaces. 
In the computer-aided design pipeline, the trimmed patch 
undergoes a number of processes such as rendering for 
visualization5 ‘, cutter path generation, area computation, 
or rapid prototyping, also known as ‘solid hard copy”. 
Probably one of the easiest ways to accomplish all this 
is by approximating the trimmed patch by triangular 
facets to within a user given tolerance. This method has 
a number of advantages: 

It is not sensitive to the complexity of the trimmed 
patch, i.e. the number of holes and trimmings along 
the boundaries do not complicate the geometry 
processing routines. 
It results in a unique database, i.e. the same triangular 
irregular network (TIN) can be used to render the 
patch as well as to compute, say, cutter paths or 
silhouette lines. 
Algorithms that operate on triangles are far easier 
and numerically more stable than those dealing with 
freeform geometry. 
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l The piecewise triangular approximation is a 
parameterization independent representation of the 
trimmed surface, i.e. very general algorithms can be 
written to process its geometry. (Of course, the 
triangulation of the trimmed surface depends on the 
parameterization. However, all triangulations are 
equivalent to within the user specified tolerance.) 

The two major disadvantages are that 

l adequate representation of a trimmed patch with 
high curvature areas requires large numbers of 
triangles. 

l the triangulation, if not done properly, can result in 
triangles of different sizes, and, in particular, in long 
and skinny triangles which, in turn, can cause 
numerical problems. 

In this paper we present a parameter space-driven 
tessellation method. The algorithm triangulates the 
trimmed parametric region such that the triangles 
mapped onto the surface form a piecewise triangular 
approximation to within a user specified tolerance. The 
parameter space is not split into regions representing 
Btzier patches; rather it is triangulated as a whole. In 
the second section a short definition of trimmed NURBS 
surfaces is given. The third section provides the details 
of each part of the algorithm. The fourth section presents 
several examples and numerical tests, and a conclusions 
section closes the paper. 

TRIMMED NURBS SURFACES 

A trimmed NURBS surface consists of two things: (a) a 
tensor product NURBS surface (see Figure I), and (b) a set 
of properly ordered trimming curves lying within the 
parameter rectangle of the surface (see Figure 2). A degree 
(p. y) NURBS surface has the form 
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with the knot vectors 

The curves C,(t) are all properly oriented forming M < N 
numbers of loops. (A loop forms a boundary of the 
trimmed region such that, when marching along the 
piecewise curve as indicated by its direction, the valid 
surface material is always on the same side. Figure 2 has 
M = 3 loops.) The trimmed surface boundaries are then 
obtained by mapping the 2D trimming curves onto the 
surface. That is, 

Sh(t), UkW) k=l, 2, . . . . N 

are surface curves bounding the trimmed surface. For 
further details on NURBS, see Reference 10. 

Figure 1 Bicubic NURBS surface 

TESSELLATION 
V 

0.0 
0.0 1.0 u 

Figure 2 Trimmed domain using cubic NURBS curve 

N,,,(u) and N,,,(u) are the degree p and q 
respectively, defined over the knot vectors 

U={a,a ,..., a, u~+~, . . . . u~_~_~, b,b ,..., b} 
yz? yx7 

V={c,c ,..., c, uq+l, . ..) l&-l, 
y q+l 

B-splines, 

The trimming curves can be of any form. However, when 
dealing with NURBS entities, it is desirable to represent 
them in NURBS form. Assume that N such curves are given 
defined as 

C,(t) = (udt), Q(C)) = i 6Ndt) k=l, 2, . . . . N (2) 
i=O 

The tessellation method presented in this paper consists 
of the following steps: 

l Step I: compute the longest edge size in the 
parameter domain. 

l Step 2: Obtain a polygonal approximation of 
trimming curves. 

l Step 3: Select points inside the valid region. 
l Step 4: Triangulate the trimmed region. 
l Step 5: Map the triangles onto the surface and build 

a 3D triangular database for further processing. 

In the following sections we elaborate on the details of 
each step. 

Computing the longest edge size 

The main idea, which has long been known to both the 
graphics’ 1*12 and CAD communitiesg”3*14, is simply this: 
obtain an edge size I such that, when triangulating the 
domain with triangles of sides less than 1, the 3D 
triangles, obtained by mapping the 2D ones onto the 
surface, deviate from the surface by less than a, where E 
is a user specified tolerance. .The general theory of 
obtaining such a bound is well understood and can be 
summarized as follows. A triangle (A, B, C) in the 
parameter space domain with edge length less than 1 is 
given. Let T(u, u) be a linearly parameterized triangle in 
3D obtained by mapping (A, B, C) onto a triangular 
facet satisfying T(A) = S(A), T(B) = S(B) and T(C) = S(C). 
The deviation between the triangular facet and the 
triangular surface patch satisfies9 

sup II e4 4 - m 4 II 
(w)E<4B,C> 
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where where 

DABC _ 
1 - sup II S”“(% 0) II (4) 

(V)E<,‘VK) 

DABC _ 
2 - sup II S”L.(% 4 II (5) 

(u.L.)E< A.B.0 

DABC _ 
3 - SUP llS”“(% t+ll (6) 

(u.r)E<A.B.C) 

That is, to obtain an edge length which is valid for every 
triangular facet, the upper bounds of the second 
derivatives, D,, D2 and D,, computed over the entire 
patch, are needed. After these bounds are found, the edge 
length is 

E, = 3 
E 

1,‘Z 

2(D, + 20, + D3) 

The bulk of the problem is to determine the bounds on 
the second derivatives for both rational and nonrational 
B-spline surfaces. Methods published so far require either 
constrained optimization and form conversion’ 3, or form 
conversion and knowledge of properties of special 
functions such as Chebyshev polynomials’. None of the 
published methods seem to offer a good solution for 
rational surfaces. The method we present here is very 
simple and numerically stable. 

Let us consider nonrational surfaces first. It is well 
known that the second derivatives of a B-spline surface 
are simply B-spline surfaces. More precisely, the second 
derivative in the u direction is computed as 

n-2 m 

Suu(u, u) = 1 1 Ni,P- 2(U)Nj.q(u)E$“’ (8) 
i=O j=O 

where 

p(z,.o) = HP- l) pi+2.J-pi+ 1.j ‘i+ l.jepi., 

1-J 
ui+p+l-“i+2 ( ui+P+2-“i+2 ui+p+l-“i+ I i 

i=O, 1, . . ., n-2; j=o, 1, . ., WI (9) 

defined over the knot vectors 

U(2)= { a,a ,..., a,~,,,, . . . . ~~-~_~,b,b ,..., bj 
yx- PI, 

I/CO)= v 

Similarly, the second derivative in the u direction is 
obtained as 

S”“(U, u)= ~ m~z Ni,p(U)Nj,q_2(U)Pi~2’ (10) 
i=O j=O 

Table 1 Change of magnitudes of maximum second derivatives during 
refinement 

Refinement 

0 
1 
2 
3 
4 

S”“” “Y S”“” “” 
S”“” 

Y” 

110.674 6 97.812 6 49.690 3 
102.496 7 93.260 5 49.690 3 
102.349 5 92.108 6 49.690 3 
101.822 6 92.064 3 49.690 3 
101.690 8 91.985 0 49.690 3 
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P!O,%Z) = 4(4- 1) 

( 

pi.j+ 2 - pi.j+ 1 pi.j+ 1 -pi.j 
- 

I., 
L’j+q+1-vj+2 vj+q+2 -Oj+2 Oj+q+ 1 - Dj + 1 > 

i=O, 1, . . . . n; j=O, 1, . . . . m-2 (11) 

defined over the knot vectors 

(J(O)= IJ 

V’2’={c~ Uq+l, . ..( vs-q-lr d,d ,...) d] 

4- 1 7 

Finally, the mixed partials are 

n-l m-l 

Sur(u, u)= C C Ni,p- l(u)Nj.q- ,(u)Pi.>” 
i=O j=O 

(12) 

where 

P!l,.l,= P4 Pi+l.,+l -pi,j+l -pi+l.j+pi.j 

1.1 
uj+q+l-vj+l ui+p+l-“i+l > 

i=O, 1 I ‘.., n-l; j=O, 1, . . . . m-l (13) 

defined over the knot vectors 

l,l’l’= { a,, up+ Ir . ., u,-p- Ir b,b,.. ) 

P P 

V~‘={c,c ,..., c, u~+~, . . . . ~,_~-~,d,d ,..., d) 

4 4 

Because the basis functions N,,,(U) and Nj,q(U) are 
nonnegative and form a partition of unity, the bounds 
on the derivatives are simply 

(141 

sup IIS&, v)ll d max II P!“~2)ll 1.J (15) 

bwkla,bl x Cc,dl 04iGTl 
O<j<m-2 

sup IILb4 u)ll Q max II pl,~l)II (16) 
bw)~[o,bl x [CA O<i<n-1 

O<j<m- I 

Upper bounds are obtained by computing the maxima 
of the position vectors (control points) of the derivative 
surfaces S,,, S,, and S,, These bounds can then be 
sharpened to any required accuracy via knot refinement. 
Table I shows the convergence properties of the 
refinement process applied to the test surface shown in 
Figure 1. Note that SEX did not change at all. It can 
happen that the maximum is at the corner of the patch 
in which case refinement is completely unnecessary. 

One might wonder how the accuracy of the derivative 
bounds affects the edge size of triangles. It is well known 
that knot refinement is not terribly fast and requires large 
amounts of memory. Consequently, computing bounds 
on derivatives to a high accuracy using knot refinement 
can be time consuming. Although knot refinement can 
be modified (localized) in a number of different ways, it 
turns out, however, that it is really uncessary. The reader 
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Table 2 Edge length and number of triangles as functions of refinement 
(&=o.l) 

Refinement i, Number of triangles 

0 0.027 03 1 2049 
1 0.027 611 2011 
2 0.027 672 2007 
3 0.027 699 2003 
4 0.027 709 2003 

Table 3 Edge length and number of triangles as functions of refinement 
(E=o.ol) 

Refinement /I Number of triangles 

0 0.008 548 18917 
1 0.008 731 18211 
2 0.008 751 18 184 
3 0.008 759 18 156 
4 0.008 762 18 152 

can easily verify that in general the maximum derivatives 
are much larger than the tolerance E. Consequently, the 
term 

E 

2(0, +20, +D,) 

in Equation 7 is not affected much by the refinement of 
the derivative surfaces. Tables 2 and 3 show the 
relationship between the levels of refinement, the edge 
length and the number of triangles computed using the 
surface in Figure 1. Although the numerical data depends 
on the surface geometry (low and high curvature areas), 
practical experience shows that the level of refinement is 
not that significant. In the examples above, four 
refinements provided 2.2% improvement for E = 0.1, and 
4.0% for E =O.Ol. Both improvements are pretty 
insignificant considering how much time the algorithm 
spent refining the surface. Our practical experience shows 
that a maximum of one or two refinements is quite 
adequate. 

Let us now turn our attention to rational surfaces. 
Denoting the numerator in Equation 1 by A(u, u) and the 
denominator by w(u, v), the second derivatives are 
obtained as 

S”“(U, 0) = 
‘&“(u, 0) - 2w,(a, u)S,(a, u) - WY&J, u)S(u, 0) 

w&, 0) 

(17) 

St.& 0) = 
A”“(& u) - 2W”(U, U)S”(U, u) - w,u(u, @(u, r) 

w(a, v) 

(18) 

Suv(u, 0) 

A”“@, r) - W.“(U, u)S(a, 0) - wu(u, $S”(& a) - wdu, @,(a, 0) = 
w(u, v) 

(19) 

Computing the maxima of these derivatives is not 
particularly easy. We chose a different route. The idea 

is to work in 4D space and consider the surface as 
nonrational. More precisely, the surface of Equation 1 
can be written as a nonrational surface in 4D space as 
follows: 

(20) 

where P~j=(Wi,jX~,j~ Wi,jyi,j, Wi,jZi,jv Wi,j). The surface of 
Equation 1 is obtamed by mappmg S”‘(u, u) onto the w = 1 
plane. Now, given a tolerance E, the surface S’“(u, u) is to 
be tessellated to within a tolerance E”’ so that, when the 
tessellation in 4D is mapped to 3D, .the surface of 
Equation 1 is tessellated to within the given tolerance E. 
The 4D tolerance is obtained as follows”: 

sW=min wi j 
& 

i.j ’ 1 +max IIPi,jll 
i.i 

(21) 

Given this tolerance, the maximum edge length is 
computed as 

( EW 

> 

l/2 
j."=3 

2(I); + 20; + 0;) 
(22) 

where D;, 0; and 0; are bounds of the 4D derivatives 
computed just as the 3D ones are computed except that 
the computation takes place in 4D space. For example, 

D;= sup IISzXu, 4ll 
Wk[a.61 x Cr.4 

where 

n-2 m 

s~u(“~ u, = C C Ni,p- 2(U)Nj,p(u)P~j2'o) 

i=O j=O 

with 

p(w) = P(P-l) p~+2,j-p~+l,j pi”,l,j-p~j - 
1.3 

ui+p+ 1 -ui+2 ui+p+2-“i+2 ui+p+l-“i+l 

The only extra cost is the additional 4D coordinate that 
needs to be considered when computing the derivative 
surfaces and the maximum derivatives. 

Polygonal approximation of trimming curves 

In the previous section we established a maximum edge 
length i. such that triangles in the parameter domain with 
sides less than i. map onto 3D triangles that are within 
E distance from the surface. The task now is to select 
points within the domain as well as along the trimming 
curves so that when triangulating the domain no edge is 
longer than I.. We elected to select points inside the 
domain uniformly using a scanline-type algorithm (see 
below). To ensure that the maximum edge length in each 
triangle is less than i., we chose the step length as 

21’2 

STEP = - i. 
2 
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Or 

21’2 

STEPW=-jW 
2 * 

for rational surfaces (for simplicity, the rest of the paper 
uses STEP only to denote rational and nonrational step 
lengths). This ensures that, if the edge happens to be 
along the diagonal of a uniform point distribution, then 
it is less than i,. Now, selecting points along trimming 
curves can be done similarly to the approach presented 
for surfaces above, i.e. by establishing a maximum 
parameter increment AC, based on the bound on the first 
derivative, for every trimming curve C,(t), k = 1, ., N, 
such that 

II C,(t) - C,(t + At)11 d i. 

After implementing this method, it turned out to be 
inefficient. It provided a very uneven point distribution 
and the number of points generated was greater than 
expected. The method we implemented disregards the 
parameterization. It divides the trimming curves into two 
groups: (a) straight lines (either the bounds of the surface 
domain or straight line B-spline trimming curves), and 
(b) curved boundaries. For straight lines, the points 
are selected by simple division, that is, if the length of 
the line segment is L, then the number of subdivision 
points along the segment is 

where Lx] denotes the integer part of x. 
Curve boundaries are approximated by the following 

recursive algorithm: 

t,= To; t,= T,,,; HALFSTEP=STEP/2.@ 
Approximate(&) 
1 

while( 1) 
i 

t = (tr + tJ2.0; 
4 = II C(t) - W,) II; 
4 = II C(t) - Wll; 
if (d, b- STEP and d, > STEP) 

\ 
Create_Point(C(t)); 
Approximate&t); 
Approximate(t,t,); 
return; 

I 

Lise if (d, d STEP and d, d STEP) 
r 

\ if (d,> HALFSTEP and d,a HALFSTEP) 

i 
Create_Point(C(t)); return; 

\ 
klse if (d,< HALFSTEP) t,=t; else t,=t; 

Lke if (d,< STEP) t,=l; else t,=t; 
I 

This routine recursively subdivides the curve until each 

edge satisfies the condition 

HALFSTEP< ljC(ti)-C(ti+ I)11 <STEP 

That is, points are not allowed to cluster together or to 
lie too far apart. There can be two problems with the 
above routine: 

l The trimming curve is smaller than STEP. In that case 
the curve is simply discarded. 

l The curve comes too close to itself at t = (t, + Q/2.0 
and hence the routine can stop without further 
dividing the remaining curve segments. This situation 
can be detected and corrected by keeping track of 
the parameter values. 

Figure 3 illustrates the concept of the above algorithm 
and Figure 4a shows the result of point selection along 
the trimming curves shown in Figure 2. 

Selection of points inside trimmed region 

The selection of points inside the trimmed region is done 
via a simple scanline-type algorithm used in raster 
graphics to fill polygons16. Once the trimming curves are 
approximated, points inside the trimmed region are 
selected in a similar way to pixel selection in polygon 
fill algorithms. The method is outlined as follows (see 
Figure 46): 

(1) Establish the number of scanlines, that is, 
compute 

(2) Sort each edge into NSL number of u buckets 
by checking whether the edge intersects the 
current scanline. If the edge intersects more than 
one scanline, put it in the lowest bucket. For 
each bucket, sort the edges by increasing u value. 

(3) Initialize an active edge table (AET) to be empty. 
Also set qncr = (u,,, - u,,JNSL and u = qncr. 

(4) While u < u,,, do 

(4.1) Move from the current c’ bucket to 
the AET those edges whose umin dc 
maintaining the AET sort order on u. 

(4.2) Compute the intersection points of the u 
scaniine with the active edges going from 
left to right. Set the ‘in’ and ‘out’ flags as 
edges are crossed. 

(4.3) Compute 

d 

1-1 STEP 

interior points within each ‘in’ segment, 
where d is the length of the segment (an 
‘in’ segment has ‘in-out’ flag pairs whereas 
an ‘out’ segment’s flag pair is ‘out-in’). 

(4.4) Increment v, i.e. U=t)+uincr. 
(4.5) Remove edges from the AET whose 

V max GV. 
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Recurse 
h 

Figure 3 Concept of curve approximation 

This routine does not consider the first and the last 
scanlines. This is correct because these lines can contain 
only vertex points and/or edges. Since the edges have 
been processed already and the vertices are kept as data 
points, these scanlines can be omitted. Figure 4c shows 
the result of point selection inside the valid domain of 
Figure 2. 

Note that this method selects about 21/2 times more 
points in each direction than a random or an adaptive 
one which would be based on 1. There is a tradeoff 
between simplicity and speed versus storage. The scanline 
method is very simple and fast; however, it produces more 
triangles than absolutely necessary. 

Triangulating the trimmed region 

For triangulating the trimmed region we used our 
algorithms that we developed for digital terrain modelling 
applications” and for triangulating multiply connected 
polygonal domains . la Since these algorithms are rather 
involved, we provide only the outline of the main ideas. 
For further details the reader is encouraged to study these 
methods. 

The algorithm is tied to a specific data structure to 
store points as well as the boundary edges of the 
trimming curves. This structure is obtained by putting a 
uniform grid over the points and processing each point 
and edge into grid cells. Each cell then has a list of points 
lying inside the cell, and a list of edges intersecting the 
cell. The algorithm then proceeds in three steps: 

l Range searching: Given an edge, find a point to form 
a valid triangle. Since trimming edges are to be 
preserved, the modified circumcircle criterion” is 
applied in the Delaunay triangulation. That is, if a 
circumcircle of a Delaunay triangle contains a point 
other than the vertices of the triangle, then every 
interior point of the triangle must be separated from 
this point by an edge of a trimming curve. To satisfy 
this criterion, for each edge, the algorithm finds a 
point for which the angle at this point is the largest 
and the sides of the triangle do not intersect any of 
the trimming edges. 
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l Shelling: Put triangles together so that completeness 
and correctness are maintained. At any stage of the 
triangulation, list the edges bounding the current 
triangulation in an edge list in, say, counterclockwise 
order. For each edge, form a modified Delaunay 
triangle, erase the current edge and add the two new 
edges in proper order to the edge list. Account for 
boundary edges and for situations where the newly 
computed triangle touches existing one(s). 

l Outut generation: Create a data structure that stores 
triangles lying within the trimmed region and 
incorporates neighbouring information for further 
processing. We chose a point list based data structure 
that stores internal and boundary points separately. 
For each point, all points surrounding this point are 
listed in clockwise order. Internal point lists are 
circular, whereas boundary ones are not. Simple 
database browsing routines can be written to answer 
queries such as ‘given an edge, what triangles share 
this edge?. The advantages of this data structure are 
(a) it is very compact and requires only modest 
storage, (b) it can be built on the fly (as the 
triangulation part of the program adds new triangles, 
the point lists are updated with almost no effort), 
and (c) triangles outside the trimmed region can be 
discarded on the fly by introducing a few flags and 
flagging when the triangulation exits the valid 
domain and enters it again. 

References 17 and 18 show walk-through examples to 
guide the reader in understanding the method. Figure 4d 
shows the triangulation of the domain depicted in Figure 
2. Note that the method can triangulate multiply 
connected domains with no extra effort. There is no need 
to obtain the Boolean union of simple domains3. 

Mapping triangles onto the trimmed surface 

Once the triangulation of the trimmed domain is 
completed, the domain triangles are mapped onto the 
surface forming a tessellation. Although this is a 
straightforward map, a data structure has to be 
maintained so that the triangles can be passed onto a 
postprocessor such as a contouring program or a shader 
based on polygonal objects. The output data structure 
(the point lists) that we obtained from the triangulation 
module can still be used because the polygonized surface 
is topologically equivalent to the plane, and the 
neighbouring information is still maintained. Figure 4e 
illustrates the result of tessellating the trimmed surface 
shown in Figures I and 2. 

Efficiency considerations 

There are several factors that affect efficiency. We 
elaborate here on the following ones: 

0 Why general triangulation routine should be used: The 
uniform selection of points raises the question as to 
why not triangulate the region using some special 
code that takes advantage of the distribution of the 
points. There are two main reasons why we elected 
to use a general algorithm: (a) we think that the 
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a 

V 

++++ttt++-- 
+f+++f++f- 

..+++++++++c+++ 
"++-b++-b+++t+++ 

+++++++ 

0.0 1.0 u 

C 

__ + + + + + +++++-- 

0.0 1.0 

b 

d 

Figure 4 Point selection; (a) point selection along trimming 
curves. (b) scan-line method of selecting points inside trimmed 
region, icj result of point selection i&tie valid domain, (d) 
triangulation of trimmed region of Figure 2, (e) tessellation of 
trimmed surface 

0 

special code would not be much simpler and faster 
than our triangulation code, and (b) the general 
triangulation algorithm allows any kind of point 
selection. If, for some reason, the user decides to use 
random distribution, only a small portion of the code 
needs to be modified. 
Adaptive versus direct triangulation: The method we 
outlined above is a direct triangulation that produces 
large numbers of triangles to guarantee that the 
maximum deviation anywhere along the surface is 
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Figure 5 Nonrational bicubic test surface Figure 7 Rational bicubic test surface 

Figrue 6 Tessellation of surface in I$ure 5 with E = 0.1 Figure 8 Tessellation of surface in F@re 7 with E = 0.3 

Tahk 4 Numerical data for Figure 6 

E NA WrOYs eP7OTC 

0.2 1265 0.0117 0.002 3 
0.1 2 430 0.004 3 0.0011 
0.05 4613 0.003 5 0.000 6 
0.025 9 116 0.0018 o.ooo4 

Table 5 Numerical data for F@re 8 T&k 7 Numerical data for Figure 12 

& EY NA error, error, E EY NA error, error, 

Table 6 Numerical data for Figure 10 

E NA error, errorc 

0.2 2 020 0.012 2 0.0019 
0.1 3 877 0.006 5 0.0009 
0.5 7 628 0.002 5 o.WO 5 
0.0025 14916 0.0014 0.0002 

0.4 0.165 2214 0.003 8 0.0019 0.5 0.200 14423 o.cQ3 3 o.Olw 3 
0.3 0.124 2853 0.005 6 0.0011 0.4 0.160 17929 0.002 9 o.ooo2 
0.2 0.080 4 195 0.003 8 O.ooO6 0.3 0.120 23 846 0.002 5 0.000 1 
0.1 0.040 8 276 0.0016 0.0004 0.2 0.080 35 435 0.0015 0.000 1 
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Figure 9 Nonrational bicubic test surface Figure 11 Rational bicubic test surface 

Figure 10 Tessellation of surface in Figure Y with ~=0.2 

less than a tolerance. Obviously, this method puts 

more triangles in low curvature areas than necessary 
to achieve an acceptable approximation. The two 
things that can be done are (a) do the triangulation 
adaptively, i.e. get an initial triangulation and refine 
it only in high curvature areas, and (b) postprocess 
the direct triangulation, i.e. throw away unnecessary 
triangles in low curvature areas. Both of these 
methods result in an optimal triangulation as far as 
the number of triangles is concerned. Unfortunately, 
obtaining a small number of triangles is only a minor 
problem. The major concern is numerical stability. 
It is well known that routines based on triangles are 
sensitive to the type of triangle. For example, long 
and skinny triangles create numerical problems. Also, 
if large triangles are mixed with small ones, many 
postprocessing routines perform badly. An example 
is contour smoothing: cut the triangular network 

Figure 12 Tessellation of surface in Figure II with e=O.5 

with a plane and smooth the polygon into a curve. 
Since the data points can be distributed very 
unevenly, most of the interpolation routines would 
give rather unpleasant results (some of them would 
create unwanted wiggles or even loops). The method 
we propose generates reasonable evenly sized 
triangles although at the cost of data storage. 

l Which data structure should be used: We used two 
separate data structures to select points inside the 
valid region (scanline method) and to triangulate that 
region (grid method). The grid structure could have 
been used to do both. The only problem is that we 
do not know in advance how many points will lie 
inside the trimmed region. Although this can be 
(overfestimated to create a grid structure, it would, 
however, slow down the triangulation. The active 
edge list based method has proven to be fast and 
robust. 
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Coloor Plate 1 Colour-coded error distribution for Figure 6 

Colour Plate 2 Colour-coded error distribution for Figure 8 

NUMERICAL TESTS AND EXAMPLES 

We have tested our algorithm using a number of 
surfaces containing large as well as small curvature 
areas. The same trimmed region was used for all the test 
surfaces, i.e. the one shown in Figure 2, and the control 
points were chosen such that they fit into the unit cube. 
Figure 5 shows a nonrational surface containing flat as 
well as bumpy areas. Figure 6 shows the result of the 
tesellations using the tolerance 0.1. Table 4 summarizes 
the numerical results where E is a user chosen tolerance, 
N, denotes the number of triangles, errors is the 

‘? 
Errol tlax I \ 

Colonr Plate 3 Colour-coded error distribution for Figure 10 

Colour Plate 4 Colour-coded error distribution for Figure 12 

maximum error inside the trimmed region and error, is 
the maximum error along the trimming curves. 

Figure 7 shows the same surface as in Figure 5 except 
that a weight of w7,,= 2.0 is applied to turn the surface 
into a rational one. Figure 8 shows the tessellation for 
&=0.3 and Table 5 summarizes the numerical results. 

In Figure 9 a more complicated surface is shown with 
varying curvatures along the boundaries as well as inside 
the surface. Figure 10 illustrates the tessellation for E = 0.2 
and Table 6 gives the numerical results. 

A final example is given in Figure 11 which was 
obtained by applying weights to the control points in 
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Figure9(w,, =w 33 = wh6 = w,, = wg8 = 3.0). The tessellation 
result is depicted in Figure 12 for E =0.5. Table 7 
summarizes the numerical results. 

Examining Tables 4-7, one thing is quite apparent: 
the theory behind the selection of edge length is too 
restrictive. Although it guarantees the result, the actual 
error is one (nonrational) or two (rational) magnitudes 
smaller than the user specified tolerance. It might happen 
that this is necessary for certain situations. However, the 
price we pay for it is quite significant both in storage 
and in computation time. 

Cd&r &&es 1-4 show the error distributions for 
Figures 6, 8, 10 and 12, respectively. To see any error 
whatsoever, we normalized the distribution to the 
maximum error over the surface. That is, red represents 
the maximum error computed across the surface and blue 
represents zero error. 

CONCLUSIONS 

We presented an algorithm for tessellating trimmed 
NURBS surfaces in the parameter domain. Based on 
bounds on the second derivatives, the method estimates 
the longest edge in the domain to obtain a triangulation 
to within a user specified tolerance. The number of 
triangles computed is higher than the one an adaptive 
algorithm would produce. However, numerical stability 
and speed justify the results. The error analysis shows 
that on average the maximum error is a magnitude 
smaller than the user specified tolerance. However, to 
ensure that high curvature areas (that might or might 
not be cut out during trimming) are adequately dealt 
with, extra triangles are necessary. An analysis on the 
bounds of surface derivatives shows that simple l-step 
or 2-step refinement of the derivative surface is adequate 
to obtain bounds resulting in the smaller number of triangles. 
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