
Tsung-Pao Fang and Les A. Piegl
University of South Florida

Our direct algorithm for

computing the Delaunay

triangulation of 2D points

permits dynamic update

of the internal grid data

structure and simultaneous

computation of the

convex hull.

Delaunay Triangulation
Using a Uniform Grid

riangulations of scattered points on the plane have been T the subject of significant research in the past few decades.
The origins go back to Voronoi' and Delaunay.' Textbooks"
and papersi-" have extensively covered their properties and the
algorithms for their construction. Most of this work deals with
the algorithms' theoretical aspects and gives upper bounds on
their complexity. In this article we present a new algorithm and
its implementation. Instead of providing a theoretical analysis,
we present implementation details, tests, and examples. Our
experience shows that implementation is not a trivial exercise.
which agrees with Forrest's opinion'?: If researchers have not im-
plemented an algorithm. their study of it is incomplete.

O u r algorithm has a number of new features:

36

It is a direct method without the overhead of the popular di-
vide-and-conquer algorithms (that is. stack management.
splitting the data set. and merging the partial results). Also,
it does not require data sorting.
It uses a uniform grid structure to form triangles and find
boundary edges and nearest points.
It creates the triangles circularly through shelling. This en-
sures that the triangulation is complete and correct, and
helps the algorithm create the output data structure as it
computes the triangles.
It uses an edge list to govern the triangulation and dynamically

decrease the complexity of the internal grid data structure.
It is numerically stable and handles coincident and collinear
points automatically.
It produces the convex hull of the data set at no extra cost.
For all the randomly generated data we tested, the algo-
rithm exhibited linear time complexity. This is a significant
property because the problem of triangulation in two di-
mensions is inherently O(n').

In the next section we discuss how to preprocess the data.
Then we show how to set up an internal data structure based on
a uniform grid. give details about the triangulation process. and
show how to use the algorithm to compute the convex hull. We
also present solutions to degeneracies, tests. and examples, and
propose a method for output generation.

Preprocessing the data
Suppose we have a set of 2 D points

(x,. v#). i = 0, I I

We want to put these points into a data structure that permits fast
searching for points making up triangles. More precisely, given
an edge <a, h>. we want the algorithm to find a point c such that
the triangle <a3 17. c> is a Delaunay triangle. (A Delaunay trian-

Delaunay Triangulation

Figure 1. Uniform grid data structure.

gle has the property that its circumscribing circle does not con-
tain any other point.) For its data structure, our algorithm uses
a uniform grid structure laid over the 2D points.

T o compute the uniform grid, first step get the min-max box
of the data set. Then offset the box outward by the point coin-
cidence tolerance TOL. That is, compute

xmin = xmin - TOL
xmax = xmax + TOL
ymin = ymin - TOL
ymax = ymax + TO L

This step is necessary to resolve conflicts when points lie on grid
lines. Next, compute the grid size:

(xmax- smin)(ymax- ymin)

= 1 n

(We recently found that size x 4/3 results in the fastest algo-
rithm.) This choice of the grid size results in the following num-
ber of grid cells in the .Y and y directions (the x and y resolutions
of the 2D domain):

xmax- xmin
size

size

x-res = int

where into is the cast operator that converts a double-precision
number into an integer.

After the grid structure has been computed, t o put each data
point in one and only one grid cell, do the following for each
point (x,, y ,) , i = 0, ..., n:

1. Compute

x, - xmin grid-x = ~

size
V , - ymin grid - y = I

Size
i-ceI/= int(grid-x)
i - cell = int(grid - y).

Here grid-x and grid-y are coordinates normalized with respect
to the origin (xmin, xmax).

2. If the cell at the index (i-cell, j-cell) is empty, then put (x,.
yJ into it.

3. If the cell already has points in it, then check for point co-
incidence. If the current point coincides with any point al-
ready in the cell, then ignore this point. Otherwise, put it in
the cell.

vertex-number

x: normalized x coordinate value

y: normalized y coordinate value

used: the usage of the point

pointer points to next point

pointer points to previous point

pointer points to next node in the same cell

This process associates each data point with one and only
one cell-even for points that lie along the lines or at the cor-
ners of the grid structure. Since xmin and ymin were offset by
TOL, if points lie on grid lines, then the algorithm chooses the
grid to the right of the vertical line and above the horizontal. If
points lie along the right or along the top side of the min-max
box, then since x m u and ymax were also offset, the algorithm
considers the cell immediately left of o r below the grid line.

Data structure
The data structure used in our algorithm is a 2D matrix of

pointers, each pointing to a linked list of points that fall into the
same cell (see Figure 1). The algorithm associates each data
point with the following structure:

struct cellnode
{

int vertex-number:
double x, y;
int used;
struct cellnode *previous-point;
struct cellnode *next-point;
struct cellnode *next-node;

1

Here vertex-number is a number between 0 and n, x and y are the
normalized coordinates of the point, used is a flag that shows
whether a point was used to form a t r iangle ,previous~oint and
nextgoinf are pointers incorporating a certain ordering into the
triangulation process, and next-node simply points to the next
node associated with the same cell.

Wiangulation
The triangulation process consists of three major steps: find-

May 1993 37

Special Feature

ing a start point and the first edge, forming triangles, and putting
triangles together.

Finding a start point and the first edge
An interesting question in triangulation is. Where should the

triangulation start? Specifically, which are the first point and
edge the algorithm should consider? Our algorithm could start
at any point. However, for efficiency it starts at a point more or
less in the middle of the data set. The algorithm is as follows (see
Figure 2):

1. Find the middle cell at the cell index

(m. n) = (x-res12. y-rrs12)

2. If the cell at (m, n) is not empty, then pick any point (the top

3. If the cell is empty, then search the neighboring cells.
element of the linked list).

Step 3 can be done a variety of ways. The current implementa-
tion first searches the top three cells, then the bottom three, fol-
lowed by the left and the right cells. It stops as soon as it finds a
point. If it finds no point, it continues by searching the top five
cells, the bottom five, the left three, and the right three, and so
on.

This procedure is rather simple. Nevertheless, it works be-
cause a start point somewhat off the data set's physical center
gives the same performance as the one closest to the center. A
major difference arises if the algorithm chooses a point close to
a boundary of the min-max box rather than one close to the
center (you will understand this point by seeing how to put tri-
angles together).

After it picks the start point PI, the algorithm computes the
first edge by using the following procedure to find the nearest
point (see Figure 3):

1. Set the minimum distance d,,,,, to a large number, for ex-
ample, the diagonal of the min-max box.

2. If the cell containing the start point has more than one point,
then find the one closest to PI and compute the distance d be-
tween the two points. If d is less than d ,",,,, then set d,,,, to d.

Figure 2. Procedure to find the first point.

3. Search rows and columns around the cell just as in the pre-
vious procedure (that is, search the top three, the bottom
three, and the left and right cells, and so on).

4. For each row and column do the following:
Drop a perpendicular from PI to the side closest to PI.
If the length of the perpendicular is less than d,,,,,, then
search the row or column. If not, mark the direction (top
row, bottom row, left column, or right column) as invalid.
If points are found, compute the distance from PI and up-
date &,,, (if the distance is less than the current minimum).

5. Stop the search when all directions are marked invalid; that
is. all points in unsearched rows and columns are farther
from PI than the point used to compute d,,,.

The found point P2 is the closest point to P, , and the edge <PI,
P,> is used to start the triangulation.

Forming triangles
Assume the algorithm has found the edge <PI, P2> (see Fig-

ure 4). To find a third point P, so the triangle <PI, P,, P2> satis-
fies the Delaunay criterion, the algorithm does the following:

1. Search on the right-hand side of PIP2.
2. Find the cells with indexes (il,jl) and (i2,j2) that are either

the cells of the endpoints or their immediate neighbors.
These cells can contain points on the right-hand side of
PIP2. Compute the index i, by intersecting the bottom line
of the cell of P , with P I P , and finding the column index of
the cell that the intersection point falls in (see Figure 4).
Compute the indexj, similarly using the grid line bounding
the cell of P2 from the right.

3. Form a triangular area covered by cells. The vertices of the

Figure 3. Procedure to find the first edge.

...... + - -

...... 4..

....

......

.... .I.

.___-I__

38 IEEE Computer Graphics & Applications

Delaunay Triangulation

Figure 4. Procedure to form a triangle, given an edge.

cell triangle are (il,jl), (i?,j,), and (i2, j z) , and the boundaries
are cells arranged horizontally, vertically, and diagonally, as
Figure 4 shows. In the diagonal direction the algorithm
chooses all cells that intersect the line PIP2. (The line-cell in-
tersection is very efficient. Because of the uniform grid ap-
plied, it can be done by one addition. That is, for each line
the algorithm computes the slope of the line and the first in-
tersection. Then each grid selection requires only one ad-
dition to move to the next intersection point.)

4. After the triangular area is formed, check each cell inside
the area. The search can be done in a variety of ways. For
example. the algorithm can search each column starting at
(i2.jl) and move to the left until it reaches (il,jl) (see Figure
4). O r it can search (i2 , j ,) , then search diagonally by visit-
ing (i2. j , + 1) and (i, - 1. jl), then (&. jl + 2), (iz - 1 ,], + 1).
and (i? - 2.jl), and so on. Thus the algorithm first searches
the cell most likely to have the point that yields the triangle
with the largest angle at the found point and as close to
equiangular as possible. We kept the searching strategy
simple, because in practical situations the average number
of cells to be visited is less than 10.

5. If points are found, then choose the one that gives the
largest angle (that is, the smallest cosine), get the circle de-
fined by P,. P2 and the point with the minimum cosine. and
set the min-max box of the circle. (The sides of the box are
bounded by grid lines.) If no points are found, search rows
from (il - k . j , - k) to (i? + k , jl - k) , and columns from (i? +
k . jl - k) to (i? + k , j 2 + k) . k = 1.2, until points are found.

6. After the first min-max box is set. continue searching along
rows and columns inside the min-max box and do the same
thing as above-that is, select the point with the smallest co-
sine. draw the circle, and update the min-max box (see Fig-
ure 5) .

7. Stop the search when there are no unvisited rows and
columns inside the current min-max box.

The dynamic update of the circle bounding box is an essential
part of the algorithm. Points close to the line P I P 2 can result in
huge boxes that might lead to searching for points on the entire
data set. Our goal is to limit the search to the immediate vicin-
ity of the edge P I P , so that points are found within a few steps.

If the edge P,P2 happens to be horizontal or vertical, the al-
gorithm uses simple boxes instead of triangles.

Putting triangles together
The most intriguing question is how to put triangles together

to ensure that the triangulation is complete and correct. A good
way to ensure completeness is to start somewhere, find the first
triangle. and then add triangles successively so that the added
triangles are simply connected; that is, there are no holes and
bridges with the already chosen triangles. Our triangulation
strategy adds triangles in a circular fashion. We explain all the
steps using the practical example illustrated in Figure 6. The
dashed lines show the uniform grid.

I2

I1

ii -3

I2

il

i, -3

Figure 5. Search cells within a bounding box.

a
a

0

a

0

a

a 0

0 a

a

Figure 6.2D test data.

Figure 7 shows the first step: finding the first edge. The algo-
rithm subdivides the edge and puts the two half edges PIPz and
P2PI into an edge list that is actually a circular queue. The al-
gorithm uses the queue throughout the triangulation process to
keep track of the current edge, which it uses to find the next tri-
angle. The queue's initial content is

P2P1, PIP?

May 1993 39

Soeoal Feature

. d2 e
e

e

e

e

Figure 8. The first triangle generated.

I

Figure 9. The second triangle generated using the new half edges.

Figure 10. Configuration before triangulation closes.

e

Figure 7. The first edge generated.

where the current edge is always at the rear of the queue. In all
the edge lists we present, the front is the first item in the list,
and the back is the last item in the list. With the current edge
PIP,. the algorithm finds the point P , and creates two new half
edges P,P, and P,P7 (see Figure 8) . Lists of new half edges are
always orderly: The first half edge points from the found point
to the end of the current half edge. and the second half edge
points from the beginning of the current half edge to the found
point. Since the half edge P I P , is not used anymore, the algo-
rithm deletes it from the queue and adds the two new half edges
to the rear in the order

P,P,, P,P,. P ,P ,

The current half edge is P,P,. The algorithm uses it to find the
point P, and the half edges P,P, and P I P , (see Figure 9). After
deletion of the current edge and addition of the new half edges,
the edge list becomes

P,P,. P;P,. P,P;. P I P ,

Continuing this process-that is, using the current half edge to
create two new half edges and updating the edge list-the algo-
rithm arrives at the important configuration shown in Figure 10.
Here the edge list is

PJI. P,P% P,P,. P,P,, P,>P,. P,P,. P I P ,

Using the current edge PIP,. the algorithm finds the point P,
and creates two new half edges P2P7 and PIP,. The half edge
P I P , is the dual of the half edge P,Pl at the front of the edge list.
Since both half edges have been processed, they can be elimi-
nated from the edge list. The new edge list is then (see Figure 11)

P?,. P,P;. P,P,. P,P+ P,P,. P,P7

We call the situation in which a found half edge is the dual of
the one at the front of the edge list a right touch. A left touch is

Figure 11. Point 1 is deleted from the data set.

10 IEEE Computer Graphics 8(Applications

Delaunay Triangulation

Figure 12. Triangulation configuration showing the "cave" situation.

a situation in which the found half edge is the dual of the one be-
fore the rear edge in the edge list (as we show in a later exam-
ple). A touch situation occurs when the algorithm has previously
used the found point. Therefore, the first time it finds each point
the algorithm flags it as used. If the algorithm subsequently
finds used points. it checks for touch cases. Otherwise, no touch
check is necessary.

Figure 11 shows that the point PI is no longer needed and
therefore can be eliminated from the grid structure (hence the ab-
sence of the point number). This step is essential, as it decreases
the time needed to find points to form triangles (see Figure 4).

Figure 12 shows the next important stage of the triangula-
tion process. The edge list is

Using the rear edge, the algorithm finds the point P, and gener-
ates the half edges P,Pl, and P,P,. Since P, is a used point, the
algorithm checks for touch cases. Unfortunately, it finds no touch
with either the front edge or the one before the rear edge. This
case is remedied by skipping the current edge P , P , , and moving
the front edge to the rear. This step is essential to avoid creating
a hole or a bridge. Now the edge list is

Using P,P,. the algorithm finds the point P, and creates two
new half edges P,P, and P7P,. Since P, is used. the algorithm
checks for touch cases. It finds a right touch with the front edge
P,P7 and therefore deletes the point P, from the data set and the
half edges P7Ph and P,P, from the edge list. The new edge list
corresponding to the triangulation in Figure 13 is

Using the current edge in the list. the algorithm finds the
point PI, and generates the new half edges P,,P, and P,P,,.
Since PI, is used. it checks for touch cases. Although it finds no
right touch with the front edge, it detects a left touch with the
edge before the rear edge (PhPlh). The algorithm removes this
edge and the current rear one from the list, and adds the newly
created edge P,P,, to the rear. The new edge list corresponding
to the configuration in Figure 14 is

8
e

e

e

12

Figure 13. Right touch after the edge E'$',,, is skipped.

8
e

1 *' e

1

Figure 14. An example of left touch.

V
12

e

I
~

Figure 15. Boundary edge is found.

Using P,P,,, the algorithm finds the point PI,. Since this point
does not have the "used" flag set, the algorithm does not check
for touch situations and adds the new half edges P,,P,, and PHPI7
to the rear of the list. after removing PJ',,. The edge list corre-
sponding to Figure 15 is

Mav 1993 41

Special Feature

Figure 17. The triangulation is completed.

19

4 n
IL

Using the rear edge P,P,,, the algorithm finds no point. We
refer to such an edge as a boundary edge. The algorithm simply
deletes it from the edge list, simultaneously moving the front
edge to the rear. The new edge list becomes

pll,P9. p l l p l l l ~ P12pIl , P13p12, p14P13, p15P14. p lhpl i . p,7plh. p!4P8

The half edge P,P, is again a boundary edge and is deleted from
the list. The algorithm moves the front edge to the rear. Now, us-
ing PJ,. it finds the unused point PI , and generates the new half
edges PI,P,,, and P,P,,, resulting in the edge list corresponding
to Figure 16:

P l l P I l l . PPPII. P I I P 1 2 r PIJPI3, P I 5 P I 4 . PIfYl,, P I P l h , P l h P C l . Pl,IPl3

At this point we have presented all the possible cases. The al-
gorithm proceeds and considers all the cases mentioned above
until the edge list becomes empty, at which point the triangu-
lation is complete. As Figure 17 shows, by the time the algorithm
reaches the end, it has deleted all the data points except the
boundary ones. Hence the searching part of the algorithm,
which is the most time-consuming part, becomes faster and
faster.

The Delaunay criterion
Here we give a proof that the algorithm produces a valid De-

launay triangulation: For each triangle computed, no data point
is found inside the circumscribing circle. Since the searching
part of the algorithm considers only the right-hand side of each
edge, all we need to prove is that no point lies inside the cir-
cumscribing circle on the left-hand side of an edge. (Since the
algorithm picked the point with the smallest cosine, no point lies
inside the circle on the right-hand side of the edge.) The proof

Figure 16. Forming a new triangle with the unused point P,B.

ha5 two steps. First, consider the first edge <A. B> (see Figure
18a). Since B is the nearest point to A. for any point C that
forms the first triangle with <A. B>, the edge <A, C> is greater
than or equal to <A, B>. Therefore, the angle A C B is less than
90 degrees and hence the arc not containing the point C i s less
than a semicircle. If the point D happens to lie inside the circle
and to the left of <A, B>, then 4. D> must be shorter than 4,
B>, which contradicts the fact that B is the nearest point to A .

Next, consider the edge <A. C> of the triangle <A, B , C>
computed above (see Figure 1%). We must prove that any point
D that lies on the right of <A, C> and outside the circle <A, B,
C> will produce a triangle 4, C , D>. whose circumscribing
circle does not contain any point that lies on the left of <A. C>.
(The circle <A. B. C> does not contain any point because <A.
B. C> is already a Delaunay triangle.) From elementary geom-
etry it follows that if D is outside the circle <A, B, C>. then we

Figure 18. Verification of the Delaunay criterion.

B

42 IEEE Computcr Graphics & Applications

Delaunay Jriangula tion

Figure 19. Structure of the algorithm.

can define the circle 4, C, D> by a point Q lying on the per-
pendicular bisector of <A, C> beyond the point P, where Pis the
intersection of the bisector with the circle <A, B, C>. The com-
plementary arc of the circle <A. Q, C> is contained entirely in
the circle 4. B, C> and is to the left of the edge <A, C>. There-
fore, this circle cannot contain any point on the left-hand side
of <A, C> because the triangle 4, B, C> does not contain any
other data point.

Applying this argument to the edges 4, D>, <A, E>, and so
on, shows that the triangulation produced by our algorithm is
Delaunay triangulation.

The structure of the algorithm

the pseudocode. The check-touch-case (Ps, P, Pe) routine is
Conceptually, the algorithm is very simple. Figure 19 shows

check-touch-case(Ps, P, Pe)
{

if(Ps == P.next) return(R1GHT-TOUCH);
if(Pe == P.previous) return(LEFl-TOUCH);
return(N0-TOUCH);

I
Computing the convex hull

The algorithm offers two effortless ways to compute the con-
vex hull: the first based on the edge list, and the second on the
grid structure. The edge-list-based method saves all boundary
edges before deleting them from the edge list. With the exam-
ple we presented earlier for triangulation, the algorithm finds
the boundary edges in the following order:

Since these edges are ordered consistently to begin with, they
hook up automatically. That is, P8PI7 is followed by P,,P,,, which
is joined to P,,P,?, and so on, and the sequence of edges is closed
by the edge Pc,Px.

The grid-structure-based method is even simpler. Figure 17
shows that all the points remaining in the grid structure at the
end of the triangulation process are boundary points. In addi-
tion, each point is associated with two pointers, previous and
next. as explained in earlier sections, Now, starting at any point
remaining in the grid structure, the algorithm can march along
the convex hull either forward (always following the direction
defined by the pointer next) or backward (following the path
suggested by the pointer previous). As a practical concern, the
algorithm computes the directed convex hulls; that is, it out-
puts the closed polygon either clockwise or counterclockwise.

Degeneracies
We need to deal with two degeneracies: collinear points and

coincident points. If the entire data set consists of collinear
points. then we have special considerations because the algo-
rithm finds no points on the left or right of the first edge. Since

initialize the half edge list with the first two half edges <P1, P2>

P I .previous=Pl .next=P2; P2.previous=P2.next=P1;
while(edge list is not empty)

{

and <P2, P1>;

get current edge <Ps, Pe>;
foundtfind-third-point(__., P, . . .);
I’third point found is P */
i f (found)

{
if (third point is used)

{
touchtcheckktouch-case (Ps, P, Pe);
switch (touch)

{
case RIGHTIOUCH:

delete front half edge from the edge list;
delete current rear half edge from the edge list;
append first half edge to the edge list;
Pe.previous=P; P.next=Pe;
break;

delete current rear half edge from the edge list;
delete half edge before current one from the edge

append second half edge to the edge list;
Ps.next=P; P.previous=Ps;
break;

move front half edge to the rear;

case LEFLTOUCH:

list;

case NO-TOUCH:

I
else I’third point was not used*/

mark third point as used;
delete rear half edge from the edge list;
append first half edge to the edge list;
append second half edge to the edge list;
P.previous=Ps; P.next=Pe; Ps.next=P; Pe.previous=P;

] else I’ no point was found*/

{
delete rear half edge from the edge list;
move front half edge to the rear of the edge list;

1
I

in this case the edge list is empty, the program quits without
computing the edges along the collinear points. A simple fix is
to check for such a situation and to output the line segments
based on the ordering inherent in the grid structure.

If the data set is not entirely collinear, then no special treatment
is necessary. The algorithm finds points not lying on the line, and
they form triangles that make the subset of points noncollinear.

Coincident points do not cause any problem, as they are elim-
inated during building of the grid structure.

Time complexity
Computational geometers consider time complexity as a the-

oretical exercise: They look for the order of algorithm growth
from a purely theoretical point of view. The formula they arrive
at may or may not reflect the algorithm’s actual cost, because

May 1993 43

~

Special Feature

500

1,000

1,500

2,000

Table 1. Timing examples in CPU seconds for randomly distributed points.

0.274725 1.351648

0.494505 2.681319

0.71 4286 3.98901 1

0.879121 5.28571 4

Number of Points I Building the Grid Structure 1 Triangulation

2,500

3,000

1.043956 6.670330

1.31 8681 7.98901 1

3,500 1.48351 6 9.329670 I I
4,000 1.648352 10.670329 I I
4,500 1.8681 32 11.956044 I I
5,000 I 2.087912 I 13.230769

Figure 20. Triangulation example: 500 points.

data sets, we ran five exam-
ples of each-for example, 5
times 1,000 points-and aver-
aged the times.

Figure 20 illustrates a data
set typical of the ones we
used. Figure 21 shows the
graphical relationship be-
tween the number of points
and the triangulation times.
We tested the algorithm with
a large number of data points
and found the practical time
complexity to be (steadily)
linear.

output
generation

For the triangulation to be
useful for further processing,
we must store the computed
triangles. We could create the
output data structure in a
number of ways-for exam-
ple. using the concept of the
winged-edge data structure.
The method we propose here
is based on a point list. We
chose this technique because
it permits output creation on
the fly. In fact, we can replace
the edge list by the point list
and control the triangulation
with this list. We introduce
our new data structure and
show how it can be used to
control the triangulation and
to form the output at the
same time.

Consider the example
shown in Figure 22. The al-
gorithm uses two point lists:
In the first it lists all interior
points; in the second, all
boundary points. For each
point, it lists in clockwise or-
der all points that surround

they havc not considered many implementation details. In this
section we present a practical complexity analysis based on ac-
tual testing of the algorithm for a variety of data. The hardware
we used was an IBM PS/2 486/25 running under IBM DOS 5.0.
Table 1 shows timing examples, in CPU seconds, for randomly
distributed points ranging in number from 500 to 5,000. Since
randomly distributed points give different results for different

that point. Figure 23 shows the data structure representing the
triangles, edges, and points of the triangulation shown in Fig-
ure 22.

The points in the first column below the double line are
boundary points, whereas those above the double line are in-
ternal ones. The data structure lets us answer all geometric
queries, for example

14 IEEE Computer Graphics & Applications

Delaunay Triangulation

1 -

/ Triangulation
~ Building grid structure

12

_ -
.._---- ._.--- ._-- _ _ - - -

All triangles incident at a point. For point 3: 13 ,5 ,6>, <3,
6,4>, 13.4, 1>, 13, 1,2>, and <3,2, 5>. For the boundary
point 5: <5.8,6>, <5,6,3>, and <5,3,2>.
All triangles incident on an edge. For edge <3,6> we get <3,
6,4> from 3’s list and <6,3,5> from 6’s list. If the edge is
<2. 1>, then from 2’s list it follows that <2.1> is a bound-
ary edge, and from 1’s list we obtain i l , 2,3>.
All edges incident at a point. For 7: <7, 4>, 1 7 , 6>, and
<7,8>.
All triangles adjacent to a given triangle. If the given tri-
angle is <3,6,4>, then we seek the triangles incident on the
half edges <3,6>, <6,4>, and <4,3>. From 6’s list we get
~ 6 . 3 , S>. from 4’s list <4,6,7>, and from 3’s list <3,4,1>.

The data structure shown in Figure 23 is very compact. We can
write simple subroutines that perform most data-structure-
browsing operations.

We now use the figures in the subsection “Putting triangles
together” to explain how to form triangles and get the data
structure simultaneously.

In Figure 7 the first edge is obtained. The algorithm puts the
two half edges into the lists shown in Figure 24a. The current
edge is < I . 2>, which is F(l)L(l). After it finds point 3 (see Fig-
ure 8). the algorithm updates the list:

I . Append 3 to the list of F.
2. Insert 3 into the second position of L’s list.
3. Create a new list and add 3, and append F(I) and L(1) to it.
4. Advance the pointer L.

Figure 24b shows the new list corresponding to Figure 8. The
current edge is F(1)L(I) = < I , 3> and the new point found is 4
(see Figure 9). Following the same procedure. the algorithm
updates the edge list as shown in Figure 24c.

The first important case is the right touch shown in Figure 10.
Figure 24d shows the corresponding edge list. The current edge
is < I . 7>. The algorithm finds the point 2. detects a right touch
(using the simple check-touch-case routine described earlier,
and updates the list:

Figure 21. Graphical illustration of time complexity.

Figure 22. Example of triangular network to illustrate the data
structure used.

5

4

1. Save the list of F.
2. Append L(1) to the end of the list following F.
3. Insert F(2) into the second position of L.
4. Advance F.

Figure 24e shows the edge list, corresponding to Figure 1 I , after
right-touch processing.

Next is the no-touch case shown in Figure 12. Figure 24f
shows the corresponding point lists. T h e current edge is 4,
16>. The algorithm finds the point 8 and processes the no-touch
case:

1. Copy Fs list to the end
2. Advance F and L.

Figure 23. Data structure
representing the triangulation
shown in Figure 22.

5 6 4 1 2

8 7 4 3 5

8 6 3 2

7 6 5

4 6 8

1 3 6 7

2 3 4

5 3 1

May 1993 45

Special Feature

F 1

F 1 2 3 2

F 1 2 2 1 3 1 3

L 2 1 1 L 3 1 2 L 4

a b C

F 2

3

4

5

6

L 7

F 6

7

8

9

10

3 1 7 11

4 1 2 12

5 1 3 13

6 1 4 14

7 1 5 15

2 1 6 L 1 6

e f

F 8

9

10

11

12

13

14

15

L 16

h

F 1

2

3

2 3 4 4

3 1 5

4 1 2 6

1 3 L 7

d

7 1 5 1 6

8 3 2 1 6 F 8

9 3 7 9

10 3 8 10

1 1 4 3 9 11

12 4 10 12

13 4 11 13

14 4 12 14

15 5 4 13 15

16 5 14 16

6 5 15 L 6

9

F 8

9 3 7 6 1 6 9

10 3 8 10

1 1 4 3 9 11

12 4 10 12

13 4 11 13

14 4 12 14

15 5 4 13 15

16 5 14 16

8 6 5 1 5 L 17

i

9 3 7 6 1 6 1 7

10 3 8

1 1 4 3 9

12 4 10

13 4 11

14 4 12

15 5 4 13

16 5 14

17 8 6 5 15

8 16

2 3 4 5 6 7

3 1

4 1 2

5 1 3

6 1 4

7 1 5

1 6

9 3 7 6

10 3 8

1 1 4 3 9

12 4 10

13 4 11

14 4 12

15 5 4 13

16 5 14

6 5 15

8 7 1 5 1 6

1

2

3

4

5

7

6

10

11

14

13

16

18

a

2 3 4 5 6 7

3 1 7

4 1 2 7 8 9 1 0

5 1 3 10 11 12 13 14

6 1 4 14 15 16

8 3 2 1 6

8 7 1 5 1 6

11 4 3 9 18

12 4 10 18 19 20

15 5 4 13

15 14 4 12

17 8 6 5 15

19 11 10 9

20

12

15

17

8

9

19

b

12 11 19

15 13 4 11 20

17 16 5 14 13 12

8 16 15

9 3 7 6 1 6 1 7

19 18 10 3 8

20 11 18 9

Figure 24. Updating the edge
lists.

I f the lists are arranged in a
circular fashion, as we recom-
mend, then the pointers F and
L are simply advanced.

Figure 13 illustrates the left
touch. Figure 24g shows the
corresponding lists. The cur-
rent edge is <8,6>. The algo-
rithm finds the point 16,
detects the left touch, and
processes it:

1. Save the list of L.
2. Append L (last) t o the

end of Fs list.
3. Decrement L.
4. Insert F(1) into the second

position of the list of L.

Figure 24h shows the point
lists corresponding to Figure
14.

Figure 15 shows the final
configuration. and Figure 24i
shows the corresponding data
structure. The current edge is
4, L7>. The algorithm finds
no point: The edge is a
boundary edge. In this case it
simply advances both point-
ers F and L.

At the end of the triangu-
lation process we have two
kinds of data:

1. Point lists that are saved
(after each left and right
touch).

2. Lists remaining in the in-
ternal circular structure.

Figure 25a shows the saved
point lists according to Figure
17. Figure 2% shows the
points remaining in the circu-
lar list.

This list (in Figure 25b)
contains all the boundary
points. Traversing them from

Figure 25. (a) Saved point lists.
(b) Boundary point lists.

46 IEEE Computer Graphics & Applications

~~

Delaunay Triangulation

9
19

Figure 26. Full data structure.

19 18 10 3 8
20 11 18 9

top to bottom gives the convex hull of the data set. The algorithm
obtains the full data structure that represents the triangulation
(Figure 17) by merging the two lists, as shown in Figure 26.

Conclusions
Our simple algorithm for triangulating 2D data points is

based on a uniform grid structure and a new triangulation strat-
egy that builds triangles in a circular fashion. This new strategy
lets the algorithm eliminate points from the internal data struc-
ture and hence decreases the time t o find points to form trian-
gles. given an edge. The algorithm has a tested linear time
complexity that significantly improves upon other methods. As
a by-product. the algorithm produces the convex hull of the
data set at no extra cost. 0

Acknowledgments
The work reported in this article was supported by the Florida High

1

2
3
4
5
7
6

10

11
14
13
16
18
20
- -

12
15

17
8

2 3 4 5 6 7
3 1 7
4 1 2 7 8 9 1 0
5 1 3 10 11 12 13 14
6 1 4 14 15 16
8 3 2 1 6
8 7 1 5 1 6

11 4 3 9 18
12 4 10 18 19 20
15 5 4 13
15 14 4 12
17 8 6 5 15
19 11 10 9
12 11 19
15 13 4 11 20
17 16 5 14 13 12
8 16 15
9 3 7 6 1 6 1 7

Technology and Industry Council. We thank thc referees for their valu-
able comments and suggestions.

I

References
1. G. Voronoi. “Nouvelles applications des paramatres continus a la

thkorie des formes quadratiques. Premier MCmoire: Sur quelques
proprietees des formes quadratiques positives parfaites,” J . reine
angewnndre Mntkematik. Vol. 133. 1907, pp. 97-178.

2. B. Delaunay. “Neue Darstellung der geometrischen Krystallogra-
phie.“ Zeifschrift Krystallographie, Vol. 84. 1932, pp. 109-149.

3. F. Preparata and M. Shamos. Cvnzpufational Geometry-An Intro-
dfrcfion. Springer-Verlag. New York. 1985.

Tsung-Pao Fang is a PhD candidate in the De-
partment of Computer Science and Engineering at
the University of South Florida. He holds a BS
degree in earth sciences from the National Cheng
Kung University in Taiwan and an MS degree in
computer science from the University of South
Florida. His research interests are in applied com-
putational geometry, computer graphics, and

4. W. Edelshrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag. New York, 1987.

5. P.J. Green and R. Sibson. “Computing Dirichlet Tessellations in
the Plane.” CompirterJ.. Vol. 21. No. 2. Feb. 1978. pp. 168-173.

6. R. Sibson. “Locally Equiangular Triangulations,” CompuferJ., Vol.
21. No. 3. March, pp. 233-245. IAu: Year?l

7. A. Bowyer. “Computing Dirichlet Tessellations,” Computer J . , Vol.
24.No. 2.Feb. 1081,pp. 162-166.

8. D.F. Watson, “Computing the n-dimensional Delaunay Tessella-
tion with Applications to Voronoi Polytopes,” Compufer J. , Vol.
24.No. 2. Feh. 1981,pp. 167-172.

9. D.T. Lee and B.J. Schachter, “Two Algorithms for Constructing
Delaunay Triangulation,“ Int’l J . Computer and Information Sci-
ence. Vol. 9, No. 3, 1980. pp. 219-242.

10. L. Guibas and J . Stolfi. “Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams,” A CM
Trcrns. Graphics. Vol. 4. No. 2. April 1985, pp. 74.123.

11. L. Guibas. D.E. Knuth, and M. Sharir, “Randomized Incremental
Construction of Delaunay and Voronoi Diagrams,” Tech. Report
481. Computer Science Dept., Courant Inst. of Mathematical Sci-
ences. New York Univ.. 1993.

12. A.R. Forrest. “Computational Geometry and Software Engineering:
Towards a Geometric Computing Environment.“ in Techniquesfor
C‘omprtfer Graphics, D.F. Rogers and R.A. Earnshaw, eds..
Sprinser-Verlag. New York. 1987. pp. 23-37.

algorithm design.

Les A. Piegl is a professor in the Department of
Computer Science and Engineering at the Uni-
versity of South Florida. His research interests are
CAD/CAM, geometric modeling, user interface
design. data structures and algorithms, and com-
puter graphics. He has recently turned to applied
computational geometry, in particular triangula-
tion and mesh generation in two and three
dimensions.

Piegl holds an MS in mathematics and a PhD in applied computing.
He is a member of ACM, SIAM, IEEE Computer Society, and Euro-
graphics. He serves as editor for Computer-Aided Design

Contact Picgl at the Department of Computer Science and Engineer-
ing, University of South Florida, 4202 E. Fowler Ave., ENG 118,Tampa,
FL 33620.

May 1993 47

